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On the Diffusion in a Lattice Gas Model:
Group-Theoretic Approach

Effat A. Saied! and S. A. El-Wakil?

Received December 18, 1996, final August 20, 1997

Motivated by some recent resuits concerning the model of a noninteracting one-
dimensional lattice gas with an order preservation of particles where multiple
occupancy of the sites is not excluded, we give new symmetries and new reduc-
tions of the corresponding continuum nonlinear partial differential equation.
Closed-form analytic solutions are found.
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1. INTRODUCTION

For situations in which a one-dimensional lattice gas with order preserva-
tion of particles where multiple occupancy of the sites is not excluded, the
dynamics of this model was studied by Kutner er al." and they developed
the master equation which describes the dynamics of particle clusters. The
corresponding continuum nonlinear diffusion equation is

Cx, )=[Do(1 + C) 2 C, 1.~ [Vol1 + C)7' C1, (1)

where C(x, 7) is the concentration of particles, Dy and ¥V, are lattice con-
stants. In this model, the diffusion coefficient and the drift velocities
become particle concentration dependent, in contrast to the standard
model of independently diffusing particles. Equation (1) has the form of a
continuity equation and the density current is the sum of a diffusive and a
convective term

Jx,1)= =Dy(1 +C)2C, + Vo(1+C) ' C (2)
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It contains the coefficient of collective or chemical diffusion,
D(C)=Dy(1+C)? (3)
and the mean particle velocity
MC)=V,y(1+C)7! (4)

In the special case, where the transition rate of a particle in the direction
of increasing the site number is equal to the transition rate when the site
number is decreasing, one get V=0 and Dy,=1, and Eq. (2) reads

J(x, )= —C, /(1 + C)? £5)

and the diffusion processes without drift.("
The model of Kutner e al,,''V in the general form, is mathematically
equivalent to the partial differential equation (PDE)

Dy ulu, = uuy, — 2u* — kuu,, (6)
where
ulx, t)=C(x, t)+1 and k="Vy/Dg

The importance of this system arises from the fact that it has a wide range
of applications in physical and related sciences, €.g. in polymer diffusion,®
transport of particles in disordered materiais.” The nonlinear diffusion
equations of the type studied here can be produced in a large variety, see
e.g. the recent paper by Eyink er al.¥

There is a continuing high level of interest in the construction of solu-
tions to the generalized Burgers Eq. (1), see e.g. refs. 5-7. The majority of
these authors consider problems such as existence of solutions, conditions
for propagation speed, and asymptotic behavior near to equilibrium and
stationary state, rather than exact solutions of (1). The similarity transfor-
mation method can help in finding exact solutions of Eq. (1).

The fundamental basis of the technique is that, when a nonlinear par-
tial differential equation is invariant under a Lie group of transformations,
a reduction transformation exists. With the help of these transformations
the partial differential equation is reduced to ordinary differential equation
(ODE) which may be solvable explicitly.’®*'® This similarity method has
been applied to many physical problems.!'"'® A more comprehensive
analysis for the class of inhomogeneous nonlinear diffusion-convection equa-
tions, with arbitrary coefficients, which possess symmetries and reductions
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will publish elsewhere. In this paper we shall apply the similarity method
to Eq. (6). We shall study the invariance of (6) under continuous groups of
transformations depending on one infinitesimal parameter (¢). The most
extensive (g) Lie-group of transformations, admitted by (6), will be shown
to depend on four arbitrary group constants, and the general class of
similarity solutions will be seen to separate into seven different subclasses
according to the number of nonzero group constants. The reduction
obtained from the optimal system of subalgebras is derived, and some new
exact solutions can be obtained. In Section 2 we summarize the essentials
of symmetry reduction of Eq. (6).

Section 3 contains the main ingredients and exact similarity solutions.
Section 4 is devoted to conclusions and remarks.

2. SYMMETRY REDUCTION

First we sketch the derivation of the symmetry reductions of Eq. (6)
using Lie group method.®®*'% Consider the one-parameter (£) Lie group of
infinitesimal transformations in v, ¢ and u given by

X=x+eX(x, 1, u)+ 0
t=t+eT(x, 1, u)+ O(?) (7)

u=u+elUx, 1, u)+ O(&?)

Equation (7) is then extended to first and second order by the prolongation
formulae, where, for example,

Oufdx =u, = 0u/dx + eU* + O(&?)
with
U*=DU/Dx —(DX/Dx)u,— (DT/Dx) u, (8)

and D/Dx is the total derivative operator with respect to ., that is,

2 G(x, 1,u)=0G/0x +u, 0G/du
Dx

In a similar way, the infinitesimal transformations U‘, U** of the partial
derivatives u, and u,, can be obtained from Eq. 7 (cf. ref. 8 Section 2) and
we have
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Uy, =u, +eU* + O(¢?) 9)

We assume that the infinitesimal transformation (7) and (9) leave the
governing Eq. (6) invariant, i.e., Eq. (6) holds when x and other variables
are replaced by x and others.

By Egs. (7) and( 9), to first order in ¢, Eq (6) becomes

~Dy U +u U™ —4uu, U* ~ku=U~
+6u" 2 U+ 2kuu, U—-2u=%u U=0 (10)

Conditions on the infinitesimals X{x, ¢, u), T(x, t,u) and U(x,t, u) are
determined by substituting Eq. 8 for U* in Eq. 10, and so on for U’ and
U** to get a polynomial in the variables u,, u,, u,,,... which we regard as
independent. Setting, successively, the coefficients of these variables, includ-
ing powers and products between them, equal to zero we obtain a large
number of partial differential equations in X, T and U which need to be
satisfied. Therefore these equations enable us to derive the generators X, T,
and U and consequently the desired Lie transformations. The resolution of
this system gives

X=a,—a,e®k
T=2ast+a, (11)
U=au+a,e*u

where a;, i=1, 2, 3, 4 are four arbitrary parameters. Equation (6) is hence
invariant under the following infinitesimal generators:

A,=9,
A, =0,

Ay=(—1/k)e** 0, +e*ua,
Ay=2t0,+ud,

(12)

A straightforward calculation gives the following commutating relations
which define the infinitesimal Lie group:

[4;, 4;]=[4,, Aj]zo’ L j=12,34
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but
[A4,, As]1=kA, and  [4,, A,]=24, (13)

The Lie algebras corresponding to the symmetry groups are characterized
by the generators A,, i=1,2,3,4. In general, the groups that leave (6)
invariant depend on four parameters a;, i=1,2,3,4. To each parameter
there will correspond a family of group invariant solutions. We want to
reduce the search for group invariant solutions to finding non-equivalent
branches of solutions.

This leads to the concept of optimal system of group invariant solu-
tions (see, e.g., ref. 9, Section 3.3 and Section 1.4), from which every other
can be derived. Following Olver,® we are able to distinguish seven dif-
ferent types of solutions corresponding to the basic fields of an optimal
system given by A,, 45, Ay, A+ A5, A, + A5, A5+ Ay, and A3+ A,. The
main use of these symmetries is to obtain a reduction of variables in
Eq. (6), which can be obtained by solving the following characteristic
equation [ 10; Section 28]:

dx _ dt _ du (14
X(x,t,u) Tix,t,u) Ulx,t,u) )

The general solution of these equations will involve two arbitrary constants
one of which takes the role of similarity variable s =s(x, t) and the other,

Table 1. Similarity Variables and Similarity Forms for the Optimal System of
Eq. (6) and the Reduced ODEs

s{x, 1) u(x, t) Reduced equations

A, X F(s) Fd*F/ds® — 2(dF/ds)* — kF dF/ds=0

Ay { ek F dF/ds =0

Ay x 1\2F F d?Fjds* — kF dFids — 2(dF/ds)* — F*/2Dy=0

FS
A+ 4, (x—1) F(s) F d?F)ds® — 2(dFjds)?* + <D_o> dF/ds - kF dFjds =0
A +4, (e =1 e kF F d?Flds® — 2(dFjds)? +(F3/k V) dFjds =0
A+ A, et 1'"2F 4Ds? d?FJds®* + (4Dy — 2Vy)s dF/ds
—8Dos*F ~\(dF/ds)* + sF2 dFjds — F32=0

Ar+ A, 12 x) e kpF s2F d2Flds? — 25} sF/ds)* — sF dFjds — F?

+ (Dos3F3/2V(2,) dFjds =0, hix)=exple **)
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say F(s), plays the role of dependent variable, called the similarity function.
By substituting the similarity forms in the partial differential Eq. (6), it will
be reduced to an ordinary differential equation in F{s). Solutions F(s) lead
by back substitution to the so-called similarity solutions u(x, t) of Eq. 6.
Table I shows the reduced ordinary differential equation and related sym-
metry invariants for each of the optimal systems, together with the corres-
ponding similarity variables s and the similarity forms connecting F(s) and
u(x, t). In the remaining part of the paper, these ordinary differential equa-
tions resulting from the reductions are investigated in detail to get
similarity solutions.

3. EXPLICIT SIMILARITY SOLUTIONS OF EQ. 6

The resulting ordinary differential equations in Table I are of second
order, except for the case where the symmetry 45 with s =1 leads to a first
order ODE, thus the explicit general solution is simple,

u(x)=14C(x)=Ge ™" (15)

where G is arbitrary constant.

The ordinary differential equations of second order resulting from the
reductions are nonlinear. All of them belong to the class of integrable and
exactly solvable evolution equations, but the last one is not integrable and
it may be solved by numerical methods. In the following we will focus our
attention on the analytic solution of the integrable nonlinear ODEs listed
in Table I.

Case 1. First integration of the first ODE in Table I is

d—F=ClF2—kF (16)

ds

and the second integration gives
F(x)=r(1 4+ Coth r(C,— C,5s)), 0>F>k/C, (17)

where r=%k/2 C,, C, and C, arbitrary constants.
Solution F(s) lead by back substitution to so called similarity solution
u(x, t) of Eq. 6. In this case, Eq. 6 has the stationary solution

u(x, 1)=r(1 + Cothr(C,— C,x)),  0>u>k/C, (18)
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For the case, r=1, ie,, C; =k/2, Eq. (1) has the solution

Clx, t)=u(x, t)— 1 =Coth(C, — kx/2), [Cl>1 (19)
Equation (16) has second integration, in another form

F(x)=r(1 + tanh r(C, — C,s)), 0<F<k/C, (20)

For the case, r=11ie. k/C;=2 and C,=0, Eq. (1) has solution
, —kx
Clx, t)=u(x, t}— 1 =tanh — ) |ICl <1 (21)

Case 2. For the third ODE in Table I, we write dF/ds=1/P(F),
then it reads

—dP/dF=2F ~'P+kP?+ F*P*2D, (22)

which is the Abel equation of first kind. Further simplification reduces (22)
to a Bernoulli equation which, on substitution of P(F)=1/Q(z) F? and
z=k/F, gives

—QdQjdz=Q+1/2 Dyz (23)

For possible ways of finding a general solution of Eq. 23 consult [17,
part II1]. It is important to emphasize that the formal solution suggested
here by using the similarity method u = 1"/2F(x) agrees with the usual dif-
fusive ¢!/2-law.(1819)

Case 3. The fourth ODE in Table I has a travelling wave solution,
where s =(x—1t) and u = F(s). The first integration gives

dF/ds = C,F?— F*/Dy—kF (24)

where C, is an arbitrary constant. There are two cases:

(1) If C,=0, Eq. 24 has solution
F(s)= VY Cye*s—1)~17 (25)
where C, is an arbitrary constant. Consequently, Eq. 1 has solution

Clx, )=u(x, 1) — 1 = VHCre>—0 —1)712 -] (26)
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(ii) If C; #0, Eq. 24 has solution
FAF—y ) (F—y,) =Ce* (27)
where

p=1y1ya q=1ydyy—ya)s r=1/yy>—y)

(28)
Y1.2=C, Do/2 + 5(C} Dj— 4k Dy)'?

and C, is an arbitrary constant.

Case 4. For the fifth ODE in Table I, the ansatz connected with it
is

s=(e ®—1) and u(x, t)=e *F(x)
The ODE is integrated once to get
dFjds = C,F*—F3kV, (29)

where C; is an arbitrary constant.
Further integration of Eq. 29 gives

(i) For C,=0,
F(5)=(Cy+2s/kVy) 12 (30)

where C, is an arbitrary constant. In this case Eq. 1 has solution

(31)

2 —kx_zt —1/2
C(x,t)=u(x,t)—1=e—kX.<C2+e—_> O

kV,
(i) For C; #0,
Flla— F)—e“* =exp(a®- (bs + C,)) (32)

where b=kV,, a=bC, and C, is an arbitrary constant.

Case 5. For the sixth ODE in Table I, upon introducing the new
variable y =In s, it becomes

F? k 2
d2Fjdy? + —— dF/dy — = dF/dy — = (dF/dy)* — F*/8D, =0  (33)
4D, 2 F
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On substitution of p{ F) = dF/dy, Eq. 33 will be the Abel equation of second
kind

p dp/dF =(k/2 — F?/4Dy) p 4+ 2p*/F + p*/8D, (34)
which can be transformed into Abel equation of first kind
dR/dz = R* + G(z) R® (35)
where
R(z)=F?/p, G(z) = F/AV,— 2F* and  z=F/AD,+k/2F
Further simplification arises on substitution of R(z)=1/H(z), which gives
—dH/dz=1+ G(z)/H(z) (36)

For details of the solution of Eqs. 36, 35, see [17, part ]

4. CONCLUSIONS

In this paper we have classified the Lie symmetries of the nonlinear
diffusion equation with drift (1), which is the continuum form of the diffu-
sion in one-dimensional lattice gas model with order preservation. We have
found several new similarity reductions and explicit solutions of these
reduced equations. With our calculations we have demonstrated that the
Lie classical method can lead to an ansatz to separate independent
variables. This method is very useful if we remember that there is more
than one possibility for a separation. It should be mentioned that the
model discussed here, for transport of particles in non-interacting lattice
gas, represents not only the equilibrium or stationary state, but states that
are far from equilibrium. The various functions of (¢} that have been
included in our results help provide a fundamental understanding of these
complicated flows on a kinetic level.

It is worth noting that, in some circumstances, solutions of non-linear
equations with appropriate boundary conditions converge to the similarity
transformation forms as ¢ — 00.2%21 So as a final comment, the similarity
solutions have played an important role in mathematical analysis, par-
ticularly in nonlinear diffusion theory. This is not primarily because of their
usefulness as global solutions but rather because of their crucial role in the
asymptotic sense.
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